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Integral equation and simulation studies of the Heisenberg spin fluid
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We develop a general method to study inhomogeneous liquids in an external field using orthogonal poly-
nomials tailored to the one-body density. The procedure makes integral equation calculations of these systems
no more difficult than those of ordinary homogeneous molecular fluids. We apply this method to the ferro-
magnetic Heisenberg spin fluid in an external magnetic field using both the reference-hypernetted chain closure
and a reference version of the Zerah-Hansen closure, with no further approximations. The calculation includes
a mapping of the two-phase region for several values of the external magnetic field. Comparison with Monte
Carlo simulation data shows the integral equation procedure yielding nearly exact results, in particular for
nonzero external field$S1063-651X98)15109-7

PACS numbe(s): 61.20.Gy, 64.60-i, 75.10—b, 75.30—m

[. INTRODUCTION disordered Heisenberg spin systems are of interest in their
own right. It has been known for some time that Co/P alloys
The GibbsianN-body density function of a Hamiltonian [9] and Co/Au meltd10] have a tendency to form amor-
Hy that is rotationally and translationally invariant must it- phous ferromagnets, although their “true liquid” nature has
self be rotationally and translationally invariant, as must therP€en questioned because of the technical difficulties posed
also be all reduced-body density functions of this Hamil- by undercooling below the Curie temperature. While these
tonian. In particular, the one-body density is a constant angyStems might be more representative of quenched spin flu-

the two-body density depends only on relative coordinateddS: very recently Albrecht and co-workels1] have finally

An external field destroys this homogeneity, producing anManaged to undercool a gBd, melt below its Curie tem-

isotropy or nonuniformity{1,2], and so makes necessary the perature at zero field, thus obtaining the first evidence of

joint calculation of the coupled one-body and two-body den_ferromagnetlc behavior in a liquid metal in conditions where

sity functions. A striking if familiar example of the response the Heisenberg exchange interaction absolutely dominates
ofya bulk s s.tem to ar? external field ispferroma netiim Inthe magnetic dipole-dipole contribution. The exchange inter-
Y 9 " Taction is the crucial term in the present paper and it is our

this paper, we shall use this particular case to present a 9efly,in aim to analyze how it models the phase behavior with
eral procedur¢3] to compute the coupled one-body and two- and without the presence of external fields.

body density functions of an inhomogeneous classical fluid 11 Heisenberg spin fluid in an external magnetic figd
in an external field. Remarkably, the procedure is no morgg gefined by the canonical partition function
difficult to carry through than similar calculations for ordi-
nary homogeneous systems.

Perhaps the simplest model of a disordered continuum 1 N
system exhibiting ferromagnetic behavior is a fluid of hard Z=TAN f I1 [drjdwj]eXF{ B> 1 Bo
spheres with embedded Heisenberg spins described using ' =1 J
classical statistical mechani¢4—8]. On the one hand, the
simplifications of this model compared to magnetic dipole- -B> uo(rij)_BE Usd(Tij , ;i -wj))- 1
dipole interactions are significant for simulation. The dipole- =) =)
dipole model presents substantial conceptual difficulties in
connection with the nonexistence of the thermodynamic Iimit-l-his can be factored into an ideal part and the exc&ss
for orientationally ordered phases. Moreover, its simulation_ Zid7ex \whare '
results are strongly dependent on the boundary conditions. '
Simulations for the Heisenberg spin model are free of these
problems(The integral equation formalism developed below

N
: . 1
serves equally well for either potentjalOn the other hand, Zid— NTAS f 11:[1 [drjdwj]exp( 13; e Bo)
1(V\N sinhBuByN
*On leave from Department of Physics, North Carolina State Uni- = _(7) P70 , 2)
versity, Raleigh, NC 27695-8202. NELA BrBg
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1 N The rest of the paper proceeds as follows. In the next

2%¥=——-y f H [dridw;fo(w))] section we present a full account of the integral equation

(4mV) =1 techniques devised to deal with the orientationally ordered

phases of our system, including explicit expressions for the

—ﬁz uo(rij)—ﬁz UsdTij i, ) | (3) calculation of thermodynamic and magnetic properties. De-

1<) 1<) tails of the simulation procedures can be found in Sec. Ill, in

) _ _ ) particular the sampling techniques required for a correct

Here =1/kgT is the inverse Kelvin temperature, Wik probing of the orientational phase space in strongly aniso-
Boltzmann’s constant) the de Broglie thermal wavelength, tropic systems such as the ferromagnets here considered. Fi-

and w=(6,¢) the orientation of the magnetic dipole mo- pally, an in-depth discussion of the most significant results

ment u, referred to the uniform field, as thez direction.  for magnetic, thermodynamic, and structural properties is
The interaction energies are written as pairwise sums of thgresented in Sec. IV.

hard sphere potentialy(r) for spheres of diameter and the
Heisenberg spin-spin potential(r,w,,w,) for r>a,

X

II. INTEGRAL EQUATION FORMULATION

Usd T, @1, @5)=—J(r)S,- Sy, (4) A. One-body and two-body density functions
The key quantities needed for a complete magnetic and
I =K g (oD 5 thermodynamic description of this system are the one-body
BI(r)= rlo ' 5 and two-body density functions,
. N
wheres is the unit spin vector in the direction @i. In this p(l)(r,w)=< > 5(r—l’j)5(w—wj)> = Lf(w)' (7)
last expression, the dimensionless coupling strelkgtmay j=1 Am
be read as the inverse reduced temperairel/T*, while
k is a dimensionless range parameter. Finally, in B, pA(r, 0,1 »")
fo(w) is the normalized one-body orientational distribution
of a noninteracting spin system, :<§ 5(r—ri)5(w—wi)ﬁ(r’—rj)é(w’—wj)>
e,B,u,BOcose ')
fo(w)=—= . (6) 2
7™ Sinh( B uBo)/ BBy =(IT)zf(w)f(w')g(n—r'|,w,w'), ®)

From this starting point, we present here a complete study
of the thermodynamics, structure, and magnetic properties ofherep=N/V is the density and(w) the one-body orien-
the topologically disordered Heisenberg spin fluid, with andtational distribution in the interacting fluid. Equati¢8) de-
without applied fields. We pay particular attention to the fer-fines the generalized pair distribution functigfr,w,w") of
romagnetic region of the phase diagram, i.e., where the syshe inhomogeneous spin system in an external magnetic
tem undergoes spontaneous magnetization. We show hofield. The angular brackets in these definitions denote a ca-
the tailored orthogonal polynomial technique presented imonical ensemble average with the Hamiltonian of &g
this paper casts the inhomogeneous problem of the orienta- The basic equations that determine the distribution func-
tionally ordered fluid into the familiar terms of a homoge- tionsf(w) andg(r,w,»’) are well known12,13. The one-
neous molecular fluid. Thus we can resort to standard intedbody density can be differentiated with respecktecosé to
gral equation techniques, such as the reference hypernettgive
chain equation and the Zerah-Hansen equation, whose calcu-

lated results are then extensively compared with Monte d f(w) p

Carlo simulation data. Our interest in the phase behavior axMls @~ an f dr do’ f(w')

extends to the gas-liquid transition and its coupling to the 0

paramagnetic-ferromagnetic transition at zero fiéile are dBusdr,m,»")

aware that the Heisenberg interaction is inadequate to model Xg(rwo') ——o—— (9

the low density behavior of ferrofluids, which is controlled

by the longer range dipole-dipole interactions, but one might, . .
expect that the action of external fields on the gas-liqui he first member of a Kirkwood-Born-Green-Yvon hierarchy

equilibrium should be similar in both cases. Future work will [14]- Calculation off (w) from this equation requires know-
concentrate on the dipole-dipole interactiom order to ex- "9 9 In.classu_:al liquid state theory, the pair distribution
plore the gas-liquid transition, we have also performed Gibb£unction is obtained from the Ornstein-Zernik®2) equa-
ensemble Monte Carl6SEMC) simulations for the spin sys- tion and a clpsure relatiofl2,13. The first of these, gener-
tem in the presence of external magnetic fields, including &lized for anisotropy,
fully aligned system. The results agree remarkably well with

the integral equation estimates. In this way we achieve a p

thorough description of the translationally disordered phases Y(I12:@1,@2)= 7— j dradwsf(wg)[ (I3, 01,w3)

of our spin system: paramagnetic gas/liquid and ferromag-

netic liquid, with good estimates for the Curie temperatures. +C(ri3,01,w3)]c(r3, 03,0,)  (10)

reads
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for the indirect correlation functioy=g—1—c, wherec is -
the direct correlation function. The second, or closure, rela-
tion expresse€ back in terms ofy and the model's pair
interactions,

C(r,m1,wz)=exd — Bup(r) — Busdr, w1, wy)

+y(r,wy,w) +b(r,w;,0;)]

—1-y(r,0;,0y). (11

This relation must be supplemented with an approximation
for b, the so-called bridge function, which is formally de-
fined in terms of a diagram summatigh?] that offers little
practical benefit. Most approximate closures ¢odefineb x
implicitly. We note that the derivative df{ w) in EqQ.(9) can
alternatively be related to the direct correlation function
through the Lovett-Mou-Buff-Wertheim equatidm5,16.

FIG. 1. Modified Legendre polynomiaf3 (x) =P,o(x) (normal-
ized to 2 generated by the Gram-Schmidt method for weight func-
tion fo(x) with BuBy=1. The orderd of the polynomials can be

. . . ] read from the number of roots.
B. Expansions in special orthogonal polynomials

A practical approach to solving Eq$9)—(11) for any the first few modified Legendre polynomiaiso(x) obtained
classical fluid in an external field using the same numericalising the distributiorfy(x), Eq.(6), with BuBy=1, a small
procedures already employed feomogeneousystems was  anisotropy. Except foPy(x), the symmetryantisymmetry
sketched in Refl3]. The essential ingredient turns out to be aboutx=0 of the standard polynomialB,o(x) for | even
orthogonal polynomials tailored to the specific one-body dis{odd) is lost in the presence of an external field, which here
tribution of the fluid [17]. The usual procedure for is in the directionx=1. Similarly asymmetric shapes are
orientation-dependent functions such #§,w;,w;) is 0 obtained for theP,,(x) with m>0, the asymmetry gradually

expand in spherical harmonid§y(w) [18], becoming less pronounced msincreases. The calculation of
the modified Legendre functions is described in Appendix A.
Y1, w1,0) =41 D Y,,m(NDY 1 m(@) Y m(w2), The numerical evaluation of the OZ equation is simpler in

Fourier transform representation, which deconvolutesrthe

I1,1p,m (12)
integral. Thus, in transform space, EG0) becomes

1 .
Yim(®)=—=—=(—1)"eM’Pn(cos 6),

~ p ~
Var k1,09~ o [ dogt([3k01,09
where P,,(cos¥) is the familiar associated Legendre func- _ _
tion, but here renormalized to two, ant= —m. This expan- +c(k, w1, w3)Jc(K, 03, 0,), (15

sion in fact makes the solution of the inhomogeneous liquid

equations very difficult. We will instead expandnmodified  with one remaining integration. This final integral can also

spherical harmonics, be eliminated and the evaluation of the OZ equation reduced
to algebra by now expanding the pair functions ag18);

Eq. (15) then b
Yrw1,00) =47 Zm Y10,m(D A m( @)W m(@2), g. (15) then becomes
1.2

(13 _ _ _ _
Piatom(K) = (= 1) 2 [71,1m(K) + €11 m(K)C1 g1 ,m(K)-
3

(—1)MeMép, (cos6). (16)

1
Vim(w)= \/T_’ﬂ'

The modified Legendre functiorB,,(cosd) are explicity  The significant feature here is that this OZ equation for an
constructed, beginning wit®y(cosé)=1, using the Gram- inhomogeneous fluid in an external fieldidentical to that

Schmidt method19] with the orthonormality condition of an ordinary homogeneous flu[d8] and so, along with
some closure equation familiar from simple liquids, can be
l . .
1 _ solved for g(r,w;,w5,) with the same algorithms already
2 J',lde(X)P'm(X)P'/m(X) o (14 used for homogeneous systef29,21].

wheref(cos#é) is the one-body distribution of the fluid. For

: . - . . . C. Numerical procedures
an isotropic fluid withf(x)=1, this construction produces P

the standard Legendre functioRg,(x) (normalized to twp ~ Equationg9)—(11) being nonlinear, their solution is itera-
For ananisotropicfluid with f(x) # 1, the difference between tive. Given a set of approximate coefficienfs,m(r), an
Pim(x) and P, (X) is crucial. improved set is produced by the following steps:

To graphically illustrate this difference, we show in Fig. 1 (1) Closure relatior-Fourier transform:
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y(raxerZay):l |2 Y1 41,m(FD) Prym(X0) Prom(X2)
1:/2,M

X(=1)"Tw(y), 17)
C(r1X11X21y):eXF[_BUO(r)_IBuSS(r!X11X21y)
+y(r1X1!X21y)+b(raxlvx2!y)]
—1-y(rX1,X2.Y), (18)
Ciyim(M =7~ f \/ﬁ dng dx,
Xf(xl)f(XZ)C(r1X11X21y)
XPm(X) Prom(X2) (=)™ Ti(y), (19
~ o o
Clllzm(k): e Jo drrc,l|2m(r)sin kr. (20
(2) OZ equation-inverse Fourier transform:
(k)= (= 1)"pCrn(K)Cir(k)
X[ =(=1)"pCrk)] 74, (21)
1 (> ~ :
ViD= 5 Jo dkkyyi,m(k)sinkr. (22

In these equationsx=cos6, y=cos¢, and T,(y) is a
Chebyshev polynomial; further, in Eq21), | is the unit

matrix Whilefm(k), C(K) are symmetric matrices with el-

ementsy; ;,m(K), C,m(K), respectively, withly,l,=m.
The inversion(19) is performed usingn-point Gaussian
quadratures with the zeroes Bfy(x) andT,(y). Upon con-

vergence of they|1,2m(r) coefficients, the generalized pair

distribution functiong is finally computed as

g(r!wl!wz):qu_ﬁUO(r)_ﬁuss(r!wl!wZ)

+y(r,01,0) +b(r,0,wp)]. (23

This solution forg(r,w,,w,) is obtained using the poly-
nomials P;,(X) generated with the curreri{x). One now
returns to Eq(9) and updates the one-body distributi(x).
In expanded form, this equation is

f(x) (X)
I F 00 ME al'zmnlm(x) (24)
§|1|2m:_Pf drlE 91, 1,m(MUpg,m(r), (29
3

where theu; | m(r) are the known coefficientsee belowof
the spin-spin interactiong(r,w,,w,), so that finally

©

In f(x)=In fo(x)+|§O aPo(X). (26)
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Herea, for I>0 is determined by numericaGaussiahin-
tegration of Eq.(24) and ay by normalization. Then-point
Gaussian quadratursee Appendix Ais exact for polyno-
mial integrands of degree less than,2a condition that al-
ways holds for the computeal coefficients. For the calcu-
lations reported in this paper, it turns out that the term linear
in x dominates the series expansion in E26), so that an
effective fieldB acting on a particle that includes the mag-
netic effects of the particle’s surroundings through the coef-
ficient a; can be calculated from this equation. In the ab-
sence of an interactionag=0) this field is of course just
BO.

The iterations forf(w) and g(r,w;,w,) are continued
until both functions are self-consistently determined. The
only approximation in the calculation is the unavoidable one
in every liquid state calculation to date, the representation of
the bridge functiorb(r,wq,w,) [12].

D. Some formal results

The angular projection coefficients of EQL3) for, say,
g(r,w;,w,) cannot be directly compared with the standard
projections typically calculated in a simulation, since these
correspond to the usual spherical harmonic basis. However,
it is straightforward to recover one set of coefficients from
the other given the moments of the one-particle distribution
function f(x). For example, to determine the expansion co-
efficients of ug(r,w;,w,) we need the coefficients of the
rotational invariant

S, - S, = COS 61,=COS 0,COS ,+ Sin 615N #,C0S 1.

(27)
From Appendix A, we have
€0S 6= x=(X)Pgo(X) + oy P1o(X), (28
sin 6= (1-x%)2=[1—(x*)]"2Pyy(x), (29
whereo2=(x?)—(x)?. This leads to
S1+5=[(X)Poo(x1) + 0xPag(x1)]
X[(X)Poo(X2) + 0xP1o(X2) ]
+[1=(x*)1P1a(X1) P11(X2)COS b1, (30)
and so[cf. Egs.(4) and(17)]
Uood 1) =—(x)23(1), (31)
UzodF) = UgadF) = — ax(X)J(r), (32)
Uzadr) == o3 J(r), (33
Up3y(r) = U3 3(r) = 3[1=(x*)13(r). (34)

Similarly, the(unnormalized projection ofg(r,w;,w5) onto
the rotational invarians, - s, is found to be

ht20(r) = 3{(x)?good(I) + o, {X)[ F100(T) + Jo10(T)]

+ 029130 1) —[1—(x3)]1g114(1)}. (35)
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For an isotropic system, witkx)=0 and (x?)=1/3, this lll. SIMULATION DETAILS
reduces to the usudl'*q(r)=g;,or) — 29;1,(r).

We can further compute the complete magnetic and ther-.
modynamic properties of a Heisenberg spin fluid in a uni
form magnetic fieldBy. The net magnetization in the direc-
tion a=x,y,z is

We have used canonical ensemigvVT) Monte Carlo
simulations to calculate the thermodynamic properties in the
“ferromagnetic fluid and Gibbs ensemble Monte Carlo simu-
lations[22,23 to determine the gas-liquid coexistence prop-

erties.
19InZ To evaluate the free energy in the orientationally ordered
<E sja> B (36 phase we have chosen as a reference state the one in which
B Bog the spins are perfectly aligned. Such a state is achieved by

coupling the spins to an infinitely strong external field. Its

and so the magnetic susceptibility components are i : . -
9 P y P free energyF, is easily obtained by thermodynamic integra-

1 oM tion [24] from the known free energy of the hard sphere fluid
a 2
Xap=Y 7B =pBu{(S14815) — (S1a){S1p) [25].
08 The free energy of the system in a constant field of
+(N=1)[(S14525) — (S1a)(S25)1}- (37)  strength\ is then given by[26,27]

Only the diagonal elements are nonvanishing. V\lBthde- y w
fining thez direction, we get the longitudinal and transverse Fy=Fp+FX +f dn’
magnetic susceptibilities as A

Xz2! pBu?= [ 1+ phyy0)]

+0(X)[ph1od 0) + pho 0)]1, (39

X <§I‘, cosﬁi> —<Z cosei>id (43)

N

N

Here (- ), and(-) denote averaging over the system with

Xyy!pBr?=3(1—(x®))[1-phy4(0)]. (39 the Hamiltonians
For an isotropic system, these susceptibility expressions re-
duce to familiar forms. H,=Ho—\>, cosé;, (44)
i

The internal energyJ, pressurep, and isothermal com-
pressibility K+ are calculated with the standard formulas of
homogeneous fluidgl2,18, again thanks to the special or-

a
thogonality of the)),,(w). We have HY = _7\2 cos 6, (49
BUIN= > (4 @m? j drdwdw,f(w;)f(w,) respectively, wherdd, is the Hamiltonian of the system in
the absence of the field whild!" is the Hamiltonian of the
Xg(r,wq,ws)Bugdr,wq,wy) ideal spin system, witl9; the angle of spin with the field.

The free energ)F;d of the ideal spin system is given by
:%Pf dr E 91,mlT) B m(1), (40 .
l1.12,m Fy

N =—In| 4

(46)

v

sinh ,8)\)
1 AN
Bolp=1- 5 oz | drdandonf(oni(on)

An accurate numerical evaluation of E@3) needs some
dBu(r,wy,w,) care[26,27]. For the details we refer to R4R7], where free
—dr energy results for the liquid and solid phases of the Heisen-

berg fluid are reported in conjunction with a determination of

=1+ 27p0ogood ) the liquid-solid coexistence properties.

GEMC calculations involved a total of 512 particles and

d,8u|1|2m(r) were made in cycles, each cycle comprising translation-

—apf dr > g |2m(r)rT' (42 rotation trial moves of thal particles, some 200 trial inser-

tions, and 1 trial volume change. Spins were inserted prefer-

1 ap entially parallel to the local field and the bias corrected for in

pkaTK: B( ) the acceptance probabilify,28].

Xg(r!wlin)r

&pT

1 (4 )2 f drdw;de,f () f(w,) IV. COMPUTED RESULTS
We have obtained the distribution functiofi$w) and

(42) g(r,wq,w,) for the Heisenberg spin fluid in a magnetic field
By using the reference-hypernetted ch&RHNC) closure
Finally, an expression for the Helmholtz free enefgyis  [29] and a reference version of the Zerah-Han@@zH) clo-

given in Appendix B. sure[30]; for r> o, these are

X C(r,wq,w)=1—pCoog0).
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CRAINC(1 1, w,) = exf] — BUsdT, ®1,@5) + Y(I, @1, @) In the limit B,—0, the effective fieldB is zero forkK <K,
andfinite for K>K., whereK.= 1/T} is then the computed
+Pps(r;oren ] = 1= ¥(r,w1,@), (47)  Curie point. This zero field limit has recently been the focus
of several work$5—8], but until now no theoretical approxi-

(1, 0y, w,) ={expm(r)[ — Busdr, wy, w>) mation has been able to completely describe the ordered
phase having spontaneous magnetization.
+y(r,wy,w5) +byg(r;o)]) —1H/m(r) For K>K_, there is a singularity wheB,—0 that is
different from the second order paramagnetic-ferromagnetic
— (N, 01,0,). (48)  transition atK=K_,. In fact, theBy,=0 line corresponds in

the By-M plane(whereM is the magnetization per partigle
The exact relatior(r,w;,w5)=—1— y(r,w;,w,) holds for  to the spinodal line that indicates the equilibrium between
r<o in both cases. phases with positive and negative magnetization. Conse-

The parameterr, in the hard sphere bridge function quently, the transverse susceptibiljgy, (but not the longi-

bus(r; o) of the RHNC equation can be treated as an adtudinal componenj,,) will diverge [33] asB,— 0, reflect-
justable hard sphere diamef@1] and chosen to minimize ing the negligible cost of rotating an ordered sample in the
the free energY\%Z]’ which improves the internal Consistency abse_nce of an eXtern_al field. It turns out that the Optimization
of this closure. In the present applications, there is littleOf @ in Eq.(48) to achieve thermodynamic consistency leads
change in such optimized results compared to the simpl& &Xyy that diverges at small but nonzero fields. This defi-
o..= o expedientexceptfor the virial pressure at the phase Ciency is easily cured if one relaxes the thermodynamic con-
boundaries. However, including the optimization for the SIStency requirement and instead optimizes éhgarameter

: ; displacing the divergence of,, to the B;=0 line. We
number of state points needed to determine the phase eq Y oy 0
librium is needlessly burdensome for our purposes at thiéﬂgiégaéfg:e thermodynamics is hardly affected by the new
stage and we have restricted the reported results to the noni- Using Monte Carlo simulation, Nijmeijer and Wejs]

optimized version of the RHNC eq_u_atlon W'tb_’mf: g. found that the paramagnetic-ferromagnetic transition for
The RZH closure features a mixing functiom(r)  ,;3_0 7 with the truncated potential occurs K= 0.264
=1—exp(—ar) with a parametew that is fixed by requiring -9 001. Our calculation in the paramagnetic phase and zero
consistency between the virial and compressibility bulkfig|q |imit yields a divergence iry,, at K.=0.2645, in ex-
moduli [30]. (However, see below for the caBg—0). The  g|ient agreement with the simulation vf';llue.
reference hard sphere bridge functimg(r; o), added by us In Fig. 2 we show the values of the magnetization per
in Eq. (48) to the usual ZH closurg30], ensures the RZH article M=M,=(cos#6) and the second order parameger
closure yields good hard sphere results in the limit of smal=<p2(cosa)> obtained from the theory and from a standard
K and improvgs the thgrmodynamic results overall. NVT Monte Carlo simulation using 86&or B,=1), 1372
To be consistent with earlier worf5,6], we have trun- 554 2048 particlesfor B,=0), and averages over 40 000
cated the spin-spin interaction atr =2.50; this hardly  configurations. Size effects are noticeableBge=0 close to
affects the thermodynamiogside from the pressuréut  ang pelow K<K,) the critical point. We include in Fig. 2
does considerably raise the critidél value. (Some results  some zero-field results from density functional theory in the
for the untruncated potential obtained using density funciggified mean field approximatidis]. In the vicinity of the
tional theory and Monte Carlo simulation can be found ingyitical temperature, one encounters convergence difficulties
Refs.[7] and[8].) Because of the discontinuity of the poten- j, golving the integral equation as spin-spin correlations be-
tial at r=r., the pressure equation picks up an additionalogme long rangedBoth x,, and x,, in Egs.(38) and (39)
term; Eq.(41) now reads diverge, with y,, exhibiting the characteristiz-type diver-
gence of second-order transitiohk Fig. 3 we illustrate the
Bplp=1+2mwpagood o) increase in the range of the relevant angular correlation func-
tion, h''Yr), as the Curie temperature is approached. The
) J”cd 2 dBu1,m(r) function h*'9r), defined in Eq.(35), describes most of the
3mp | art 91y,m(NN = orientational behavior of the spin fluid, since it is the projec-
tion of g(r,w;,w,) onto the rotationalllig]varianélzéz
2 3 q - =co0s6;,. From Eq.(35), we have lim__.h~(r)=3M*, a
* 37T'Drcll%,m Oryizm(Te) Buiyipm(Te ), (49) limiting behavior that is exactly fulfilled in our calculations
by both simulated and theoretical results. In the figure, we
wherea(rc)z[g(rc_) +g(ri)e. he}vg sub]Eractt_ad the corr(:]sponﬁing Ilimiting values c;lfthe cor-
The first set of calculations is fok=1, po®=0.7, K refation functions so that the plots present the same
=1/T*=0-0.5, and two values of the external field, asymptotic !|m|t of Z€ro for the two temperatures, which fa-
BuBy=1 and 0, using the RZH closure. As noted earlier, Wecmtates_ their comparison. _The increase in the range of '_[he
0 correlations with the lowering of the temperature is readily

find for these cases that the one-body orientational distribué reciated. The aareement between theorv and simulation is
tion function f(x) continues to be well described by the pp ; g y

: . S remarkable in both cases.
functional form offo(x), but with aneffective field B To get an estimate of the critical inverse temperature from

the ordered-phase results, we fit the RZH magnetization in
the vicinity of the critical temperature(<0.3) to a power
law,

e:BMBX

= St BuB)I BB 0

f(x)
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FIG. 3. Behavior of the angular correlation functibhqr) as
06 | the Curie temperature is approached in the ferromagnetic phase at
zero field obtained from MC simulation using 1372 partidiehite
circles correspond t& =0.275 and black circles t&6=0.5) for a
é o4 | densitypo®=0.7. The RZH results are shown as solid lines in both
s cases. The long-range limiting valud% has been subtracted from
%" both theory and simulation results to ease the comparison between
- the two temperatures. The discontinuity rat 2.5¢0 is due to the
02 | potential truncation.
M=a(K—-KY)>~, (50
00 8 ¢ L 2 L L
01 02 o3 04 05 which leads toa=1.694, 3=0.397, andK'=0.254. The

fitted value ofg is close to the valugg=0.387 reported by
Nijmeijer and Weig 5] and to the critical exponent of the 3D
lattice Heisenberg model3=0.362+0.004 [34] and B

FIG. 2. Magnetization per particlel and second order param-
eterS as functions of inverse temperatufe= 1/T* obtained from
MC simulation[squares foBuB,=1 and white circleg2048 par-  =0.3639+0.0035[35]. However, the available data from the
ticle sample and black diamondg(1372 particle samplefor  jntegral equation magnetization are too far away figpto
BuBo=0]. The RZH integral equation results appear as solid linesgraw here any conclusion with confidence and this agree-
The dashed lines correspond to a power law fit to the RZH data justyent might simply be fortuitous. Nevertheless, a similar fit
above K. The dash-dotted curves represent density functional5rried out on the second-order parameSeproduces the
theory estimatef]. same estimate dk¢ and so we might conclude that this is

the theoretical estimate of the critical inverse temperature
derived from the ordered-phase data. The agreement between

TABLE |. Magnetic and thermodynamic properties of the Heisenberg spin fluigfot andpa®=0.7 calculated in the RZH approxi-
mation; the values of,, at zero field folK>K correspond to the last converged solution. The MC value in parentheses is a rough estimate
since, due to the vicinity of the critical point, the results at this temperature are particularly sensitive to systarh=sig& Bu>.

BuBo=0 BuBo=1
K pBuB BUIN Bplp pkeTKr X3, X3y @ BuB BUIN Bplp pksTKr X3, x5y @
RZH MC RZH MC

0 0 0 5.694 0.0574 0.333 0.333 100 1 0 5.694 0.0572 0.276 0.313 7.0
0.05 0 —0.003 5.692 0.0574 0.423 0.423 10.0 1.2390.047 5.641 0.0577 0.303 0.376 7.0
0.10 O —0.013 5.685 0.0574 0.574 0.574 10.0 1.5750.140 5539 0.0584 0.310 0.454 7.0
015 0 —0.034 -0.034 5.668 0.0576 0.877 0.877 10.0 2.0180.297 —0.298 5.365 0.0596 0.281 0.540 7.0
0.20 O —0.074 —-0.073 5.635 0.0580 1.736 1.736 10.0 2.5480.517 5.121 0.0615 0.227 0.618 7.0
025 0 —0.156 (-0.175) 5.539 0.0601 8.854 8.854 4.00 3.1220.780 —0.782 4.826 0.0638 0.174 0.679 7.0
0.30 1.778 —0.597 —-0.597 4.927 0.0618 1.655 8.534 1.88 3.7121.068 4505 0.0666 0.134 0.725 7.0
0.35 2.637 —1.009 —1.008 4.465 0.0657 0.666 7.733 1.92 4.3041.367 —1.365 4.170 0.0698 0.106 0.760 7.0
0.40 3.358 —1.384 —1.384 4.039 0.0694 0.366 6.312 1.90 4.8961.673 3.828 0.0734 0.088 0.786 7.0
0.45 4.021 —1.739 —-1.740 3.633 0.0734 0.245 5424 1.86 5.4861.983 3.482 0.0774 0.075 0.806 7.0
0.50 4.647 —2.084 —2.082 3.237 0.0779 0.209 5.841 181 6.07/32.295 —2.295 3.133 0.0819 0.066 0.821 7.0
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80 ' ' grals over pair correlation functions only for the RHNC ap-
| BuB, =1 ] proximation(see Appendix B In the case of the RZH ap-
proximation, we must resort to tedious thermodynamic
integrations from the reference stafe=0. Thus, our free

energy estimate in this latter case is given by

6.0 Iy

40 X

20

BF=FJ)  PFus fK dK’
£ 00 = + U/N)¢r —-, 53
P N N 0 <B >K K ( )
whereF s is the hard sphere fluid free energy a@ff is the
noninteracting ideal spin contribution, given by
Fld sinh BBy
00 > " = 0 N =— In( 477—,3MBO . (54)

1/c

FIG. 4. ThehYr) angular correlation function from MC simu- The thermodynamic integration in E¢53) is particularly
lation (white circleg and the RZH integral equatiasolid lines for ~ tedious at zero field, due to the presence of the singularity at
K=0.5 andpa®=0.7 with and without an external magnetic field. the Curie temperature and the need to optimizedtiparam-

The discontinuity ar =2.5¢0 is due to the potential truncation. eter to achieve the zero-field divergencexgf. A summary
of the thermodynamic results for the new set of states is
the critical point estimatelé'c=0.2645 obtained in the disor- presented in Table Il. Once again, theoretical results for zero
dered phase ani{=0.254 obtained in the ordered phasefield are obtained only with the RZH approximation. For
can be regarded as good. Clearly, there is room for improvefinite field, the quality of the RHNC results exceeds some-
ment, perhaps by imposing further consistency conditions. liwhat the RZH results, in particular for the virial pressure. As
particular, one would want to the free energy, the thermodynamic integration on the
RZH internal energies yields slightly better results than the
J(X) direct formula of RHNC (If this procedure were carried out
Xez= PR75R - (52 6n the RHNC internal energies, the values obtainedFor
would be practically identical, given the agreement of both
to hold numerically. approximations for the internal energyin any case, the

The magnetic and thermodynamic properties of this firsSRHNC direct free energies are already remarkably good. The
set of states, including the effective fielBJ are summarized departures observed in the RZH virial pressures at zero field
in Table | for external fieldg3uBy=0 and 1. Direct com- stem mostly from the hard core terms in E49), since the
parison with Monte Carlo data is available only for the in- spin-spin contributions, including the term accounting for the
ternal energyU and here we find excellent agreement with potential truncation, are reproduced with accuracies compa-
the results obtained using the RZH closure. That this excelrable to that of the internal energy. In order to improve these
lent agreement between simulation and theory also extendesults it would be necessary to implement a thermodynamic
to the correlation functions when the external field is turnedconsistency condition, which would be considerably more
on can be seen in Fig. 4. We note in Table | thatgptB,  cumbersome at zero field, where it would be added to the
=1 the consistency parameteiin the RZH closure is insen- enforcement of the transverse susceptibility divergence. This
sitive to changes in magnetic interaction strength; the detetlatter constraint is essential to reproduce the correct magnetic
mining factor is the hard sphere interaction. behavior.

To get another assessment of the quality of the integral Confident of the quality of our theoretical thermodynamic
equation approximations used in this paper, we have pefestimates, we are now in a position to calculate the gas-liquid
formed a second set of calculations, with=1 and po®  phase equilibrium. Since we already have information on the
=0.92, for which the simulation free energies have also beemero-field phase diagram from R¢8], it is of primary in-
calculated by means of painstaking simulation runs. For theéerest to estimate the boundaries of the phase diagrams in the
theory, the free energy can be obtained directly from intepresence of various external magnetic fields. Thus, we also

TABLE Il. Thermodynamic properties for a high density staper{=0.92) of the hard sphere Heisenberg spin fluid. Integral equation
vs MC (NVT) simulation results using 512 spins.

B(F—F&)/N BPIp BUIN M

BuBo T MC RHNC RzH MC RHNC RZH MC RHNC RZH MC RHNC  RzH

0 1.0 -1.675 —-1.672 3.20 276 —7.642 —7.631 0.935 0.933
3.0 2.978 2.96 9.65 9.16 —1.744 1.742 0.764 0.759
3.38 1.0 -—-3.380 -348 -—3.38 2.78 291 255 —7.824 -—-7.822 —7.819 0948 0.948 0.948
3.0 1.62 1.49 1.57 9.03 8.95 86 —2253 -—-2250 -—2249 0.881 0.880 0.880

avalue obtained from thermodynamic integration of the excess internal energy vi&3q.
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RHNC calculations, whereby thermodynamic propertasd
in particular the pressure and free engrgye substantially
improved. The phase equilibrium is calculated by means of a
double tangent construction on the free energy data furnished
] by the RHNC. The results of this calculation are presented in
Fig. 5, along with GEMC data, which are also summarized in
Table Ill. Comparing the pure Yukawa and the zero field
results in this figure, one notes that the equilibrium densities
are only slightly affected by the external field. We have
therefore chosen a relatively large fiej@uBy=16, to per-
form an additional set of calculations at nonzero but finite
field. The results obtained from the RHNC approximation,
seen in Fig. 5, although relatively good, are somewhat worse
than those obtained for the pure Yukawa; this is a direct
consequence of the neglect of the optimization condition for
finite field. The situation is slightly worse using the RZH
equation in the zero field case. Here the use of thermody-
namic integration based on the energy route, which yields
extremely good thermodynamics, is too time consuming,
since it has to be performed for every density needed to map
the isotherms required for the double tangent construction.
Consequently, we have used the virial route starting from
low density results, which is somewhat poorer, since RZH
virial pressures are not as accurate as the corresponding in-
ternal energiegsee Table ). Therefore, we have only cal-
L0 culated two equilibrium pointgeach implies 100 integral
equation solutions which are shown in the lower part of
FIG. 5. Phase diagram of the Heisenberg spin fluid in the presFig. 5. In this case, the data show deviations within 8—10%,
ence of an external fieldupper figure¢ and at zero fieldlower ~ Which compares poorly with the 1-5% deviations in the pure
figure). Simulation data are shown as black circles and RHNC reRHNC or 0.5% in the optimized RHNC.
sults as solid lines. In the lower figure, the simulation data are taken Finally, both theory and simulation show that the effect of
from Ref.[6] while the dash-dotted line indicates density functional an external field on the spin systeand presumably also on
theory results taken from Ref8]; white diamonds represent two  ginolar fluids[37]) is a considerable increase in the critical
equilibrium points obtained from thermodynamic integration of thetemperature, while equilibrium densities are not significantly
RZH results. affected; i.e., external fields tend to stabilize the liquid phase.
In summary, we have presented an application of a novel
consider a fully aligned spin system, i.e., a spin fluid undettechnique to study orientationally ordered fluid phases, based
the action of an infinitely strong external field. This turns outon a combination of traditional integral equation methods
to be nothing but a fluid of hard spheres plus attractivewith an appropriate choice of orthogonal polynomials to ex-
Yukawa potential, for which the RHNC approximation haspand the correlation functions. Detailed comparisons with
already been shown to yield excellent res{i86]. The sim-  standard NVT Monte Carlo, finite size scaling, and GEMC
plicity of this extreme case makes feasible the optimizatiorshow that the proposed approach is powerful enough to give
of the reference system hard sphere diametgg in the  a correct account of the magnetic transition and a more than

14 F 1

12 |

1.0

0.0

TABLE lll. Gas-liquid coexistence properties for the Heisenberg spin fluid in the presence of external fields as obtained from GEMC
calculations. The subscriptsand| denote the gas and liquid phases, respectiyelis the chemical potential.

No. of
BuBy  T*  cycles Pq P (BPa®)y (BPc®), (Bum)g (Bw) (BUIN)g (BUIN) Mg M,
16 1.1 60000 0.02t0.004 0.72+0.01 0.019 -0.13 —-1548 —-15.46 -—-0.181 —5.57 0.935 0.961
1.2 30000 0.05%0.006 0.66+0.01 0.040 0.005 —13.62 —13.61 —-0.384 —459 0.930 0.956
1.3 40000 0.0820.01 0.55*+0.02 0.058 0.022 —12.58 —-1258 —-0.546 —3.43 0.926 0.948
1.35 40000 0.12+0.02 0.50*+0.03 0.078 0.073 —11.72 —-11.71 —-0.772 —2.98 0.926 0.945
1.375 30000 0.16+0.04 0.43*0.05 0.094 0.09 —-1190 -11.89 -1.10 —2.56 0.928 0.940
o0 1.3 20000 0.0420.006 0.672-0.015 0.033 0.050 —-3.61 —-3.62 —-0.338 —4.74
1.4 40000 0.0660.005 0.60*+0.01 0.049 0.030 —349 —-349 -0491 -—-3.87

15 20000 0.12+0.01 0.53*0.02 0.073 0.076 —3.64 —-3.64 -0.803 -—-3.21
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reasonable description of the gas-liquid phase behavior. An sinha) 1
extension of this work to dipolar systems is currently under f(X)=( X ) eV, (A2)
way.
these are obtained as
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APPENDIX A: MODIFIED LEGENDRE FUNCTIONS or a=1/[(x2)—(x)2]2 Thus we find
The prerequisite$38] for construction of the modified 1
Legendre functions are the moments Pry(x) = X—(x) 1 {x) _
. YL = (01 (DedD10 |1 x
(xk)E%f dx f(x)xk. (A1) (AG)
-1
In the second equality of EqA6), we have used two deter-
For an exponential distribution minantsD,,,, defined in general fom=0,1,2,..,l, by
<(1_X2)m> <X(1—X2)m> <Xl—m(1_x2)m>
(x@=XAM A=A e (XM LX)
Dim= . ' _ , (A7)
<lem(1_x2)m> <lem+l(1_xz)m> ... <X2(Ifm)(1_X2)m>

which we supplement witld ,,_; ,=1. The general expression fB,(x) is given by Akhieze38] as

1 xy (X
) OB e (X
Pro(x) = m : o ' : (A8)

<XI71> <XI> <X2lfl>

1 x X

Retaining the general structure of the standBrg(x), a similar procedure is followed for highen values. Thus, the
sequence fom=1 begins withP;;(x)=(1—x3)Y2(1—(x?))¥% P, (x)=(1—x?)Y?%a(x—b) is then constructed to be or-
thogonal toPq4(x) and normalized to unity. More briefly, we can generalize the expression given by AkhieZapfr)y and
define finally
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((1=x3)m) (XA=xA™) e (A=)
<X(1_X2)m> <X2(1_X2)m> <X|7m+l(1_x2)m>
(1_X2)m/2
7’|m(X)=m : : ' : (A9)
<lemfl(1_X2)m> <lem(l_X2)m> <X2(I—m)—1(1_xz)m>
1 X x!-m

Integrals overx=cos6 are evaluated using Gaussian Then fromBF (&)= —In Z(&) we get
quadraturd 38] based on the zeroesx, of P,o(X),

1 n dﬂ(':g(f) =—N,3,udb;;)é§) <X>+%(;r\l:)2 J drdw,dw,
3 f dxfOOh()~ 2 wih(x), (A10)
-t k=t X (1) f(02)g(r w1,0,5|€) Busdr,01,05),
with the weights (B3)
n-1 -1 whereg(r,w,,w,| &) is the pair distribution function for the
Wy = Zﬁ PE(x) (A1l)  partially charged system. We note tHat0) is the free en-

ergy of hard spheres with noninteracting spins in an external

Equation (A10) is exact if h(x) is a polynomial ofx of field By(0); that is,

degree A—1 or less. This ensures the exatmericalor- E(O = sinh BuB
thonormality of the polynomials used in the calculation, ﬁ_(): 'B—HS— Wﬁ , (B4)
N N BuB
y7s
n
> WiPin(X) P (X)) = 81+ (A12) WhereFsis the total free energy of a hard sphere system.
k=1 Integration of Eq(B3) then gives
for I,1’<n [cf. Eq. (14)]. BF  BF(0) BAF
N- N BB = Bo(O )+ =5
APPENDIX B: HELMHOLTZ FREE ENERGY
A . . BFus sinh BuB
The Helmholtz free energlf'= —kgT In Z¢ of the ideal =—y " 477,8—8
spin gas is, from Eq(3), K
BF sinh BuB +Bu(B—B )<x>+BA—F (BS)
~=In A3—1—In(47r—0). B1 0 N
N p BuBy (B1)
B where the spin-spin contribution is
To calculate the total free energy we use the familiar “charg-
ing” process, turning on the spin-spin interactions with a BAF 1 »p
parametert, 0<¢<1. However, as emphasized by Sullivan N " 2(4n)? f drdwydw,f(wy)f(ws)
[39], the one-body distributiorf(w) should remainun-
changedas the interaction is turned on. Thus we will also 1
adopt an effective external fielfy(¢) designed to maintain X o dég(r,y,w,| &) Busd T, w1,w,). (B6)
fixed the f(w) found by calculation, Eq(50). Define then
the partition function Finally, the excess free ener@*=F—F is
N .
1 BFEE sinh BuB
Z(8)= raan f ,Hl [drjdw,-]ex;J( ,rmzso(g); cos 6, N~ | BuBOO—In| =z =
sinh BuBy
_,3231_ Uo(rij)_fﬁ; Usd(Tjj aﬂ)iij))v (B2 _['BMBO<X>_|H(W
ex
where the external field is such that + BFHS+ BAF (B7)
N [\
Bo(£=0)=B,

with BFEYN=BF,s/N—In pA3+1 the excess free energy
Bo(é€=1)=By. of the hard sphere system.
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The final step is evaluation gfAF/N. We follow the derivation of Morita and HiroikietQ]; appropriate generalizations for
molecular systemp20] and special polynomialgtl] have already been described. The result is

BAF 1.

=~ 3PCood0) - zpf an )3E{In de{1+ (= 1)) 1= (= 1)"p tlFn(k) 1+ 3p? ([TE(0 - Tk 1}

1 1 [ dk sy
ZPCHS(O)+ f(Z )3{'”[1+PhHS(k)] phns(K) + 3 p?[Chs(K) — vRs(K) 1}

|1|2m(r | 5)
(B8)

+ 50 [ or [ ae 3 alrle — o

whereT (k), Cr(k), andH (k) are symmetric matrices with elements; m(k), C,m(K), andhy | nw(k), respectively, for

[1,1,=m, with h=g—1; det and tr are the determinant and trace operations. The last term @& enust be approximated.

For the RHNC closure, one assumes the bridge function does not change appreciably as the interaction goes from the hard
sphere potential to the full potential and the last term is neglected.
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