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Integral equation and simulation studies of the Heisenberg spin fluid
in an external magnetic field

F. Lado* and E. Lomba
Instituto de Quı´mica Fı́sica Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain

J. J. Weis
Laboratoire de Physique The´orique et Hautes Energies, Baˆtiment 211, Universite´ de Paris-Sud, 91405 Orsay Cedex, France

~Received 26 February 1998!

We develop a general method to study inhomogeneous liquids in an external field using orthogonal poly-
nomials tailored to the one-body density. The procedure makes integral equation calculations of these systems
no more difficult than those of ordinary homogeneous molecular fluids. We apply this method to the ferro-
magnetic Heisenberg spin fluid in an external magnetic field using both the reference-hypernetted chain closure
and a reference version of the Zerah-Hansen closure, with no further approximations. The calculation includes
a mapping of the two-phase region for several values of the external magnetic field. Comparison with Monte
Carlo simulation data shows the integral equation procedure yielding nearly exact results, in particular for
nonzero external fields.@S1063-651X~98!15109-7#

PACS number~s!: 61.20.Gy, 64.60.2i, 75.10.2b, 75.30.2m
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I. INTRODUCTION

The GibbsianN-body density function of a Hamiltonian
HN that is rotationally and translationally invariant must
self be rotationally and translationally invariant, as must th
also be all reducedn-body density functions of this Hamil
tonian. In particular, the one-body density is a constant
the two-body density depends only on relative coordina
An external field destroys this homogeneity, producing
isotropy or nonuniformity@1,2#, and so makes necessary t
joint calculation of the coupled one-body and two-body de
sity functions. A striking if familiar example of the respons
of a bulk system to an external field is ferromagnetism.
this paper, we shall use this particular case to present a
eral procedure@3# to compute the coupled one-body and tw
body density functions of an inhomogeneous classical fl
in an external field. Remarkably, the procedure is no m
difficult to carry through than similar calculations for ord
nary homogeneous systems.

Perhaps the simplest model of a disordered continu
system exhibiting ferromagnetic behavior is a fluid of ha
spheres with embedded Heisenberg spins described u
classical statistical mechanics@4–8#. On the one hand, the
simplifications of this model compared to magnetic dipo
dipole interactions are significant for simulation. The dipo
dipole model presents substantial conceptual difficulties
connection with the nonexistence of the thermodynamic li
for orientationally ordered phases. Moreover, its simulat
results are strongly dependent on the boundary conditi
Simulations for the Heisenberg spin model are free of th
problems.~The integral equation formalism developed belo
serves equally well for either potential.! On the other hand

*On leave from Department of Physics, North Carolina State U
versity, Raleigh, NC 27695-8202.
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disordered Heisenberg spin systems are of interest in t
own right. It has been known for some time that Co/P allo
@9# and Co/Au melts@10# have a tendency to form amor
phous ferromagnets, although their ‘‘true liquid’’ nature h
been questioned because of the technical difficulties po
by undercooling below the Curie temperature. While the
systems might be more representative of quenched spin
ids, very recently Albrecht and co-workers@11# have finally
managed to undercool a Co80Pd20 melt below its Curie tem-
perature at zero field, thus obtaining the first evidence
ferromagnetic behavior in a liquid metal in conditions whe
the Heisenberg exchange interaction absolutely domin
the magnetic dipole-dipole contribution. The exchange int
action is the crucial term in the present paper and it is
main aim to analyze how it models the phase behavior w
and without the presence of external fields.

The Heisenberg spin fluid in an external magnetic fieldB0
is defined by the canonical partition function

Z5
1

N!L3N E )
j 51

N

@dr jdv j #expS b(
j

mj•B0

2b(
i , j

u0~r i j !2b(
i , j

uss~r i j ,v i ,v j ! D . ~1!

This can be factored into an ideal part and the excessZ
5ZidZex, where

Zid5
1

N!L3N E )
j 51

N

@dr jdv j #expS b(
j

mj•B0D
5

1

N! S V

L3D NF4p
sinh bmB0

bmB0
GN

, ~2!i-
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Zex5
1

~4pV!N E )
j 51

N

@dr jdv j f 0~v j !#

3S 2b(
i , j

u0~r i j !2b(
i , j

uss~r i j ,v i ,v j ! D . ~3!

Here b51/kBT is the inverse Kelvin temperature, withkB
Boltzmann’s constant,L the de Broglie thermal wavelength
and v5(u,f) the orientation of the magnetic dipole mo
ment m, referred to the uniform fieldB0 as thez direction.
The interaction energies are written as pairwise sums of
hard sphere potentialu0(r ) for spheres of diameters and the
Heisenberg spin-spin potentialuss(r ,v1 ,v2) for r .s,

uss~r ,v1 ,v2!52J~r !ŝ1• ŝ2 , ~4!

bJ~r !5K
e2k~r /s21!

r /s
, ~5!

whereŝ is the unit spin vector in the direction ofm. In this
last expression, the dimensionless coupling strengthK may
be read as the inverse reduced temperature,K51/T* , while
k is a dimensionless range parameter. Finally, in Eq.~3!,
f 0(v) is the normalized one-body orientational distributi
of a noninteracting spin system,

f 0~v!5
ebmB0cosu

sinh~bmB0!/bmB0
. ~6!

From this starting point, we present here a complete st
of the thermodynamics, structure, and magnetic propertie
the topologically disordered Heisenberg spin fluid, with a
without applied fields. We pay particular attention to the f
romagnetic region of the phase diagram, i.e., where the
tem undergoes spontaneous magnetization. We show
the tailored orthogonal polynomial technique presented
this paper casts the inhomogeneous problem of the orie
tionally ordered fluid into the familiar terms of a homog
neous molecular fluid. Thus we can resort to standard i
gral equation techniques, such as the reference hypern
chain equation and the Zerah-Hansen equation, whose c
lated results are then extensively compared with Mo
Carlo simulation data. Our interest in the phase beha
extends to the gas-liquid transition and its coupling to
paramagnetic-ferromagnetic transition at zero field.~We are
aware that the Heisenberg interaction is inadequate to m
the low density behavior of ferrofluids, which is controlle
by the longer range dipole-dipole interactions, but one mi
expect that the action of external fields on the gas-liq
equilibrium should be similar in both cases. Future work w
concentrate on the dipole-dipole interaction.! In order to ex-
plore the gas-liquid transition, we have also performed Gi
ensemble Monte Carlo~GEMC! simulations for the spin sys
tem in the presence of external magnetic fields, includin
fully aligned system. The results agree remarkably well w
the integral equation estimates. In this way we achiev
thorough description of the translationally disordered pha
of our spin system: paramagnetic gas/liquid and ferrom
netic liquid, with good estimates for the Curie temperatur
e
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The rest of the paper proceeds as follows. In the n
section we present a full account of the integral equat
techniques devised to deal with the orientationally orde
phases of our system, including explicit expressions for
calculation of thermodynamic and magnetic properties. D
tails of the simulation procedures can be found in Sec. III
particular the sampling techniques required for a corr
probing of the orientational phase space in strongly an
tropic systems such as the ferromagnets here considered
nally, an in-depth discussion of the most significant resu
for magnetic, thermodynamic, and structural properties
presented in Sec. IV.

II. INTEGRAL EQUATION FORMULATION

A. One-body and two-body density functions

The key quantities needed for a complete magnetic
thermodynamic description of this system are the one-b
and two-body density functions,

r~1!~r ,v!5K (
j 51

N

d~r2r j !d~v2v j !L 5
r

4p
f ~v!, ~7!

r~2!~r ,v,r 8,v8!

5K (
iÞ j

d~r2r i !d~v2v i !d~r 82r j !d~v82v j !L
5

r2

~4p!2 f ~v! f ~v8!g~ ur2r 8u,v,v8!, ~8!

wherer5N/V is the density andf (v) the one-body orien-
tational distribution in the interacting fluid. Equation~8! de-
fines the generalized pair distribution functiong(r ,v,v8) of
the inhomogeneous spin system in an external magn
field. The angular brackets in these definitions denote a
nonical ensemble average with the Hamiltonian of Eq.~1!.

The basic equations that determine the distribution fu
tions f (v) andg(r ,v,v8) are well known@12,13#. The one-
body density can be differentiated with respect tox5cosu to
give

d

dx
lnF f ~v!

f 0~v!G52
r

4p E dr dv8 f ~v8!

3g~r ,v,v8!
dbuss~r ,v,v8!

dx
, ~9!

the first member of a Kirkwood-Born-Green-Yvon hierarc
@14#. Calculation off (v) from this equation requires know
ing g. In classical liquid state theory, the pair distributio
function is obtained from the Ornstein-Zernike~OZ! equa-
tion and a closure relation@12,13#. The first of these, gener
alized for anisotropy, reads

g~r 12,v1 ,v2!5
r

4p E dr3dv3f ~v3!@g~r 13,v1 ,v3!

1c~r 13,v1 ,v3!#c~r 32,v3 ,v2! ~10!
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for the indirect correlation functiong5g212c, wherec is
the direct correlation function. The second, or closure, re
tion expressesc back in terms ofg and the model’s pair
interactions,

c~r ,v1 ,v2!5exp@2bu0~r !2buss~r ,v1 ,v2!

1g~r ,v1 ,v2!1b~r ,v1 ,v2!#

212g~r ,v1 ,v2!. ~11!

This relation must be supplemented with an approximat
for b, the so-called bridge function, which is formally d
fined in terms of a diagram summation@12# that offers little
practical benefit. Most approximate closures forc defineb
implicitly. We note that the derivative off (v) in Eq. ~9! can
alternatively be related to the direct correlation functionc
through the Lovett-Mou-Buff-Wertheim equation@15,16#.

B. Expansions in special orthogonal polynomials

A practical approach to solving Eqs.~9!–~11! for any
classical fluid in an external field using the same numer
procedures already employed forhomogeneoussystems was
sketched in Ref.@3#. The essential ingredient turns out to b
orthogonal polynomials tailored to the specific one-body d
tribution of the fluid @17#. The usual procedure fo
orientation-dependent functions such asg(r ,v1 ,v2) is to
expand in spherical harmonicsYlm(v) @18#,

g~r ,v1 ,v2!54p (
l 1 ,l 2 ,m

g l 1l 2m~r !Yl 1m~v1!Yl 2m̄~v2!,

~12!

Ylm~v!5
1

A4p
~21!meimfPlm~cosu!,

wherePlm(cosu) is the familiar associated Legendre fun
tion, but here renormalized to two, andm̄52m. This expan-
sion in fact makes the solution of the inhomogeneous liq
equations very difficult. We will instead expand inmodified
spherical harmonics,

g~r ,v1 ,v2!54p (
l 1 ,l 2 ,m

g l 1l 2m~r !Yl 1m~v1!Yl 2m̄~v2!,

~13!

Ylm~v!5
1

A4p
~21!meimfPlm~cosu!.

The modified Legendre functionsPlm(cosu) are explicitly
constructed, beginning withP00(cosu)51, using the Gram-
Schmidt method@19# with the orthonormality condition

1
2 E

21

1

dx f~x!Plm~x!P l 8m~x!5d l l 8 , ~14!

where f (cosu) is the one-body distribution of the fluid. Fo
an isotropic fluid with f (x)51, this construction produce
the standard Legendre functionsPlm(x) ~normalized to two!.
For ananisotropicfluid with f (x)Þ1, the difference between
Plm(x) andPlm(x) is crucial.

To graphically illustrate this difference, we show in Fig.
-

n

l

-

d

the first few modified Legendre polynomialsPl0(x) obtained
using the distributionf 0(x), Eq. ~6!, with bmB051, a small
anisotropy. Except forP00(x), the symmetry~antisymmetry!
about x50 of the standard polynomialsPl0(x) for l even
~odd! is lost in the presence of an external field, which he
is in the directionx51. Similarly asymmetric shapes ar
obtained for thePlm(x) with m.0, the asymmetry gradually
becoming less pronounced asm increases. The calculation o
the modified Legendre functions is described in Appendix

The numerical evaluation of the OZ equation is simpler
Fourier transform representation, which deconvolutes thr
integral. Thus, in transform space, Eq.~10! becomes

g̃~k,v1 ,v2!5
r

4p E dv3f ~v3!@ g̃~k,v1 ,v3!

1 c̃~k,v1 ,v3!# c̃~k,v3 ,v2!, ~15!

with one remaining integration. This final integral can al
be eliminated and the evaluation of the OZ equation redu
to algebra by now expanding the pair functions as in~13!;
Eq. ~15! then becomes

g̃ l 1l 2m~k!5~21!mr(
l 3

@ g̃ l 1l 3m~k!1 c̃l 1l 3m~k!# c̃l 3l 2m~k!.

~16!

The significant feature here is that this OZ equation for
inhomogeneous fluid in an external field isidentical to that
of an ordinary homogeneous fluid@18# and so, along with
some closure equation familiar from simple liquids, can
solved for g(r ,v1 ,v2) with the same algorithms alread
used for homogeneous systems@20,21#.

C. Numerical procedures

Equations~9!–~11! being nonlinear, their solution is itera
tive. Given a set of approximate coefficientsg l 1l 2m(r ), an
improved set is produced by the following steps:

~1! Closure relation1Fourier transform:

FIG. 1. Modified Legendre polynomialsPl(x)[Pl0(x) ~normal-
ized to 2! generated by the Gram-Schmidt method for weight fun
tion f 0(x) with bmB051. The orderl of the polynomials can be
read from the number of roots.
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g~r ,x1 ,x2 ,y!5 (
l 1 ,l 2 ,m

g l 1l 2m~r !Pl 1m~x1!Pl 2m~x2!

3~21!mTm~y!, ~17!

c~r ,x1 ,x2 ,y!5exp@2bu0~r !2buss~r ,x1 ,x2 ,y!

1g~r ,x1 ,x2 ,y!1b~r ,x1 ,x2 ,y!#

212g~r ,x1 ,x2 ,y!, ~18!

cl 1l 2m~r !5
1

4p E
21

1 dy

A12y2 E21

1

dx2E
21

1

dx1

3 f ~x1! f ~x2!c~r ,x1 ,x2 ,y!

3Pl 1m~x1!Pl 2m~x2!~21!mTm~y!, ~19!

c̃l 1l 2m~k!5
4p

k E
0

`

drrcl 1l 2m~r !sin kr. ~20!

~2! OZ equation1inverse Fourier transform:

G̃m~k!5~21!mrC̃m~k!C̃m~k!

3@ I 2~21!mrC̃m~k!#21, ~21!

g l 1l 2m~r !5
1

2p2r E
0

`

dkkg̃ l 1l 2m~k!sin kr. ~22!

In these equations,x5cosu, y5cosf, and Tm(y) is a
Chebyshev polynomial; further, in Eq.~21!, I is the unit

matrix while G̃m(k), C̃m(k) are symmetric matrices with el
ements g̃ l 1l 2m(k), c̃l 1l 2m(k), respectively, with l 1 ,l 2>m.

The inversion ~19! is performed usingn-point Gaussian
quadratures with the zeroes ofPn0(x) andTn(y). Upon con-
vergence of theg l 1l 2m(r ) coefficients, the generalized pa

distribution functiong is finally computed as

g~r ,v1 ,v2!5exp@2bu0~r !2buss~r ,v1 ,v2!

1g~r ,v1 ,v2!1b~r ,v1 ,v2!#. ~23!

This solution forg(r ,v1 ,v2) is obtained using the poly
nomialsPlm(x) generated with the currentf (x). One now
returns to Eq.~9! and updates the one-body distributionf (x).
In expanded form, this equation is

d

dx
lnF f ~x!

f 0~x!G5 (
l 1 ,l 2 ,m

j l 1l 2mPl 1m~x!
dPl 2m~x!

dx
, ~24!

j l 1l 2m52rE dr(
l 3

gl 1l 3m~r !ul 3l 2m̄~r !, ~25!

where theul 1l 2m(r ) are the known coefficients~see below! of

the spin-spin interactionuss(r ,v1 ,v2), so that finally

ln f ~x!5 ln f 0~x!1(
l 50

`

alPl0~x!. ~26!
Hereal for l .0 is determined by numerical~Gaussian! in-
tegration of Eq.~24! and a0 by normalization. Then-point
Gaussian quadrature~see Appendix A! is exact for polyno-
mial integrands of degree less than 2n, a condition that al-
ways holds for the computedal coefficients. For the calcu
lations reported in this paper, it turns out that the term lin
in x dominates the series expansion in Eq.~26!, so that an
effective fieldB acting on a particle that includes the ma
netic effects of the particle’s surroundings through the co
ficient a1 can be calculated from this equation. In the a
sence of an interaction (a150) this field is of course just
B0 .

The iterations forf (v) and g(r ,v1 ,v2) are continued
until both functions are self-consistently determined. T
only approximation in the calculation is the unavoidable o
in every liquid state calculation to date, the representation
the bridge functionb(r ,v1 ,v2) @12#.

D. Some formal results

The angular projection coefficients of Eq.~13! for, say,
g(r ,v1 ,v2) cannot be directly compared with the standa
projections typically calculated in a simulation, since the
correspond to the usual spherical harmonic basis. Howe
it is straightforward to recover one set of coefficients fro
the other given the moments of the one-particle distribut
function f (x). For example, to determine the expansion c
efficients of uss(r ,v1 ,v2) we need the coefficients of th
rotational invariant

ŝ1• ŝ25cosu125cosu1cosu21sin u1sin u2cosf12.
~27!

From Appendix A, we have

cosu5x5^x&P00~x!1sxP10~x!, ~28!

sin u5~12x2!1/25@12^x2&#1/2P11~x!, ~29!

wheresx
2[^x2&2^x&2. This leads to

ŝ1• ŝ25@^x&P00~x1!1sxP10~x1!#

3@^x&P00~x2!1sxP10~x2!#

1@12^x2&#P11~x1!P11~x2!cosf12, ~30!

and so@cf. Eqs.~4! and ~17!#

u000~r !52^x&2J~r !, ~31!

u100~r !5u010~r !52sx^x&J~r !, ~32!

u110~r !52sx
2J~r !, ~33!

u111~r !5u1121~r !5 1
2 @12^x2&#J~r !. ~34!

Similarly, the~unnormalized! projection ofg(r ,v1 ,v2) onto
the rotational invariantŝ1• ŝ2 is found to be

h110~r !53$^x&2g000~r !1sx^x&@g100~r !1g010~r !#

1sx
2g110~r !2@12^x2&#g111~r !%. ~35!
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For an isotropic system, witĥx&50 and ^x2&51/3, this
reduces to the usualh110(r )5g110(r )22g111(r ).

We can further compute the complete magnetic and th
modynamic properties of a Heisenberg spin fluid in a u
form magnetic fieldB0 . The net magnetization in the direc
tion a5x,y,z is

Ma5mK (
j

sj aL 5
1

b

] ln Z

]B0a
~36!

and so the magnetic susceptibility components are

xab[
1

V

]Ma

]B0b
5rbm2$^s1as1b&2^s1a&^s1b&

1~N21!@^s1as2b&2^s1a&^s2b&#%. ~37!

Only the diagonal elements are nonvanishing. WithB0 de-
fining thez direction, we get the longitudinal and transver
magnetic susceptibilities as

xzz/rbm25sx
2@11rh̃110~0!#

1sx^x&@rh̃100~0!1rh̃010~0!#, ~38!

xyy /rbm25 1
2 ~12^x2&!@12rh̃111~0!#. ~39!

For an isotropic system, these susceptibility expressions
duce to familiar forms.

The internal energyU, pressurep, and isothermal com-
pressibility KT are calculated with the standard formulas
homogeneous fluids@12,18#, again thanks to the special o
thogonality of theYlm(v). We have

bU/N5
1

2

r

~4p!2 E drdv1dv2f ~v1! f ~v2!

3g~r ,v1 ,v2!buss~r ,v1 ,v2!

5 1
2 rE dr (

l 1 ,l 2 ,m
gl 1l 2m~r !bul 1l 2m~r !, ~40!

bp/r512
1

6

r

~4p!2 E drdv1dv2f ~v1! f ~v2!

3g~r ,v1 ,v2!r
dbu~r ,v1 ,v2!

dr

511 2
3 prs3g000~s!

2 1
6 rE dr (

l 1 ,l 2 ,m
gl 1l 2m~r !r

dbul 1l 2m~r !

dr
, ~41!

1

rkBTKT
[bS ]p

]r D
T

512
r

~4p!2 E drdv1dv2f ~v1! f ~v2!

3c~r ,v1 ,v2!512r c̃000~0!. ~42!

Finally, an expression for the Helmholtz free energyF is
given in Appendix B.
r-
-

e-

f

III. SIMULATION DETAILS

We have used canonical ensemble~NVT! Monte Carlo
simulations to calculate the thermodynamic properties in
ferromagnetic fluid and Gibbs ensemble Monte Carlo sim
lations@22,23# to determine the gas-liquid coexistence pro
erties.

To evaluate the free energy in the orientationally orde
phase we have chosen as a reference state the one in w
the spins are perfectly aligned. Such a state is achieved
coupling the spins to an infinitely strong external field.
free energyFp is easily obtained by thermodynamic integr
tion @24# from the known free energy of the hard sphere flu
@25#.

The free energy of the system in a constant field
strengthl is then given by@26,27#

Fl5Fp1Fl
id1E

l

`

dl8

3F K (i
cosu i L

l8

2K (
i

cosu i L
l8

id G . ~43!

Here ^•&l and ^•&l
id denote averaging over the system wi

the Hamiltonians

Hl5H02l(
i

cosu i , ~44!

Hl
id52l(

i
cosu i , ~45!

respectively, whereH0 is the Hamiltonian of the system in
the absence of the field whileHl

id is the Hamiltonian of the
ideal spin system, withu i the angle of spini with the field.
The free energyFl

id of the ideal spin system is given by

bFl
id

N
52 lnS 4p

sinh bl

bl D . ~46!

An accurate numerical evaluation of Eq.~43! needs some
care@26,27#. For the details we refer to Ref.@27#, where free
energy results for the liquid and solid phases of the Heis
berg fluid are reported in conjunction with a determination
the liquid-solid coexistence properties.

GEMC calculations involved a total of 512 particles a
were made in cycles, each cycle comprising translati
rotation trial moves of theN particles, some 200 trial inser
tions, and 1 trial volume change. Spins were inserted pre
entially parallel to the local field and the bias corrected for
the acceptance probability@7,28#.

IV. COMPUTED RESULTS

We have obtained the distribution functionsf (v) and
g(r ,v1 ,v2) for the Heisenberg spin fluid in a magnetic fie
B0 using the reference-hypernetted chain~RHNC! closure
@29# and a reference version of the Zerah-Hansen~RZH! clo-
sure@30#; for r .s, these are
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cRHNC~r ,v1 ,v2!5exp@2buss~r ,v1 ,v2!1g~r ,v1 ,v2!

1bHS~r ;s ref!#212g~r ,v1 ,v2!, ~47!

cRZH~r ,v1 ,v2!5$exp~m~r !@2buss~r ,v1 ,v2!

1g~r ,v1 ,v2!1bHS~r ;s!#!21%/m~r !

2g~r ,v1 ,v2!. ~48!

The exact relationc(r ,v1 ,v2)5212g(r ,v1 ,v2) holds for
r ,s in both cases.

The parameters ref in the hard sphere bridge functio
bHS(r ;s ref) of the RHNC equation can be treated as an
justable hard sphere diameter@31# and chosen to minimize
the free energy@32#, which improves the internal consistenc
of this closure. In the present applications, there is li
change in such optimized results compared to the sim
s ref5s expedient,exceptfor the virial pressure at the phas
boundaries. However, including the optimization for t
number of state points needed to determine the phase e
librium is needlessly burdensome for our purposes at
stage and we have restricted the reported results to the
optimized version of the RHNC equation withs ref5s.
The RZH closure features a mixing functionm(r )
512exp(2ar) with a parametera that is fixed by requiring
consistency between the virial and compressibility b
moduli @30#. ~However, see below for the caseB0→0!. The
reference hard sphere bridge functionbHS(r ;s), added by us
in Eq. ~48! to the usual ZH closure@30#, ensures the RZH
closure yields good hard sphere results in the limit of sm
K and improves the thermodynamic results overall.

To be consistent with earlier work@5,6#, we have trun-
cated the spin-spin interaction atr 5r c[2.5s; this hardly
affects the thermodynamics~aside from the pressure! but
does considerably raise the criticalK value. ~Some results
for the untruncated potential obtained using density fu
tional theory and Monte Carlo simulation can be found
Refs.@7# and@8#.! Because of the discontinuity of the pote
tial at r 5r c , the pressure equation picks up an additio
term; Eq.~41! now reads

bp/r511 2
3 prs3g000~s!

2 2
3 prE

0

r c
drr 2gl 1l 2m~r !r

dbul 1l 2m~r !

dr

1 2
3 prr c

3 (
l 1 ,l 2 ,m

ḡl 1l 2m~r c!bul 1l 2m~r c
2!, ~49!

whereḡ(r c)[@g(r c
2)1g(r c

1)#/2.
The first set of calculations is fork51, rs350.7, K

51/T* 50 – 0.5, and two values of the external fiel
bmB051 and 0, using the RZH closure. As noted earlier,
find for these cases that the one-body orientational distr
tion function f (x) continues to be well described by th
functional form of f 0(x), but with aneffective field B,

f ~x!5
ebmBx

sinh~bmB!/bmB
. ~50!
-

le

ui-
is
n-

ll

-

l

e
u-

In the limit B0→0, the effective fieldB is zero forK,Kc
andfinite for K.Kc , whereKc51/Tc* is then the computed
Curie point. This zero field limit has recently been the foc
of several works@5–8#, but until now no theoretical approxi
mation has been able to completely describe the orde
phase having spontaneous magnetization.

For K.Kc , there is a singularity whenB0→0 that is
different from the second order paramagnetic-ferromagn
transition atK5Kc . In fact, theB050 line corresponds in
the B0-M plane~whereM is the magnetization per particle!
to the spinodal line that indicates the equilibrium betwe
phases with positive and negative magnetization. Con
quently, the transverse susceptibilityxyy ~but not the longi-
tudinal componentxzz! will diverge @33# as B0→0, reflect-
ing the negligible cost of rotating an ordered sample in
absence of an external field. It turns out that the optimizat
of a in Eq. ~48! to achieve thermodynamic consistency lea
to a xyy that diverges at small but nonzero fields. This de
ciency is easily cured if one relaxes the thermodynamic c
sistency requirement and instead optimizes thea parameter
by displacing the divergence ofxyy to the B050 line. We
find that the thermodynamics is hardly affected by the n
choice ofa.

Using Monte Carlo simulation, Nijmeijer and Weis@5#
found that the paramagnetic-ferromagnetic transition
rs350.7 with the truncated potential occurs atKc50.264
60.001. Our calculation in the paramagnetic phase and z
field limit yields a divergence inxzz at Kc

l 50.2645, in ex-
cellent agreement with the simulation value.

In Fig. 2 we show the values of the magnetization p
particle M[Mz5^cosu& and the second order parameterS
5^P2(cosu)& obtained from the theory and from a standa
NVT Monte Carlo simulation using 864~for B051!, 1372
and 2048 particles~for B050!, and averages over 40 00
configurations. Size effects are noticeable forB050 close to
and below (K,Kc) the critical point. We include in Fig. 2
some zero-field results from density functional theory in t
modified mean field approximation@8#. In the vicinity of the
critical temperature, one encounters convergence difficul
in solving the integral equation as spin-spin correlations
come long ranged.@Both xzz andxyy in Eqs. ~38! and ~39!
diverge, withxzz exhibiting the characteristicl-type diver-
gence of second-order transitions.# In Fig. 3 we illustrate the
increase in the range of the relevant angular correlation fu
tion, h110(r ), as the Curie temperature is approached. T
function h110(r ), defined in Eq.~35!, describes most of the
orientational behavior of the spin fluid, since it is the proje
tion of g(r ,v1 ,v2) onto the rotational invariantŝ1• ŝ2
5cosu12. From Eq.~35!, we have limr→`h110(r )53M2, a
limiting behavior that is exactly fulfilled in our calculation
by both simulated and theoretical results. In the figure,
have subtracted the corresponding limiting values of the c
relation functions so that the plots present the sa
asymptotic limit of zero for the two temperatures, which f
cilitates their comparison. The increase in the range of
correlations with the lowering of the temperature is read
appreciated. The agreement between theory and simulati
remarkable in both cases.

To get an estimate of the critical inverse temperature fr
the ordered-phase results, we fit the RZH magnetization
the vicinity of the critical temperature (K,0.3) to a power
law,
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FIG. 2. Magnetization per particleM and second order param
eterS as functions of inverse temperatureK51/T* obtained from
MC simulation@squares forbmB051 and white circles~2048 par-
ticle sample! and black diamonds~1372 particle sample! for
bmB050#. The RZH integral equation results appear as solid lin
The dashed lines correspond to a power law fit to the RZH data
above Kc

u . The dash-dotted curves represent density functio
theory estimates@8#.
 is

ure
een
M5a~K2Kc
u!b, ~51!

which leads toa51.694, b50.397, andKc
u50.254. The

fitted value ofb is close to the valueb50.387 reported by
Nijmeijer and Weis@5# and to the critical exponent of the 3D
lattice Heisenberg model,b50.36260.004 @34# and b
50.363960.0035@35#. However, the available data from th
integral equation magnetization are too far away fromKc to
draw here any conclusion with confidence and this agr
ment might simply be fortuitous. Nevertheless, a similar
carried out on the second-order parameterS produces the
same estimate ofKc

u and so we might conclude that this
the theoretical estimate of the critical inverse temperat
derived from the ordered-phase data. The agreement betw

.
st
l

FIG. 3. Behavior of the angular correlation functionh110(r ) as
the Curie temperature is approached in the ferromagnetic pha
zero field obtained from MC simulation using 1372 particles~white
circles correspond toK50.275 and black circles toK50.5! for a
densityrs350.7. The RZH results are shown as solid lines in bo
cases. The long-range limiting value 3M2 has been subtracted from
both theory and simulation results to ease the comparison betw
the two temperatures. The discontinuity atr 52.5s is due to the
potential truncation.
-
timate

7.0
0
0
0
0
0
0
0
0
0
0

TABLE I. Magnetic and thermodynamic properties of the Heisenberg spin fluid fork51 andrs350.7 calculated in the RZH approxi
mation; the values ofxyy at zero field forK.Kc correspond to the last converged solution. The MC value in parentheses is a rough es
since, due to the vicinity of the critical point, the results at this temperature are particularly sensitive to system size.x* [x/rbm2.

bmB050 bmB051
K bmB bU/N bp/r rkBTKT xzz* xyy* a bmB bU/N bp/r rkBTKT xzz* xyy* a

RZH MC RZH MC

0 0 0 5.694 0.0574 0.333 0.333 10.0 1 0 5.694 0.0572 0.276 0.313
0.05 0 20.003 5.692 0.0574 0.423 0.423 10.0 1.23920.047 5.641 0.0577 0.303 0.376 7.
0.10 0 20.013 5.685 0.0574 0.574 0.574 10.0 1.57520.140 5.539 0.0584 0.310 0.454 7.
0.15 0 20.034 20.034 5.668 0.0576 0.877 0.877 10.0 2.01820.297 20.298 5.365 0.0596 0.281 0.540 7.
0.20 0 20.074 20.073 5.635 0.0580 1.736 1.736 10.0 2.54820.517 5.121 0.0615 0.227 0.618 7.
0.25 0 20.156 (20.175) 5.539 0.0601 8.854 8.854 4.00 3.12220.780 20.782 4.826 0.0638 0.174 0.679 7.
0.30 1.778 20.597 20.597 4.927 0.0618 1.655 8.534 1.88 3.71221.068 4.505 0.0666 0.134 0.725 7.
0.35 2.637 21.009 21.008 4.465 0.0657 0.666 7.733 1.92 4.30421.367 21.365 4.170 0.0698 0.106 0.760 7.
0.40 3.358 21.384 21.384 4.039 0.0694 0.366 6.312 1.90 4.89621.673 3.828 0.0734 0.088 0.786 7.
0.45 4.021 21.739 21.740 3.633 0.0734 0.245 5.424 1.86 5.48621.983 3.482 0.0774 0.075 0.806 7.
0.50 4.647 22.084 22.082 3.237 0.0779 0.209 5.841 1.81 6.07322.295 22.295 3.133 0.0819 0.066 0.821 7.
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the critical point estimatesKc
l 50.2645 obtained in the disor

dered phase andKc
u50.254 obtained in the ordered pha

can be regarded as good. Clearly, there is room for impro
ment, perhaps by imposing further consistency conditions
particular, one would want

xzz5rm
]^x&
]B0

~52!

to hold numerically.
The magnetic and thermodynamic properties of this fi

set of states, including the effective fieldB, are summarized
in Table I for external fieldsbmB050 and 1. Direct com-
parison with Monte Carlo data is available only for the i
ternal energyU and here we find excellent agreement w
the results obtained using the RZH closure. That this ex
lent agreement between simulation and theory also exte
to the correlation functions when the external field is turn
on can be seen in Fig. 4. We note in Table I that forbmB0
51 the consistency parametera in the RZH closure is insen
sitive to changes in magnetic interaction strength; the de
mining factor is the hard sphere interaction.

To get another assessment of the quality of the inte
equation approximations used in this paper, we have
formed a second set of calculations, withk51 and rs3

50.92, for which the simulation free energies have also b
calculated by means of painstaking simulation runs. For
theory, the free energy can be obtained directly from in

FIG. 4. Theh110(r ) angular correlation function from MC simu
lation ~white circles! and the RZH integral equation~solid lines! for
K50.5 andrs350.7 with and without an external magnetic fiel
The discontinuity atr 52.5s is due to the potential truncation.
e-
In

t

l-
ds
d

r-

al
r-

n
e
-

grals over pair correlation functions only for the RHNC a
proximation ~see Appendix B!. In the case of the RZH ap
proximation, we must resort to tedious thermodynam
integrations from the reference stateK50. Thus, our free
energy estimate in this latter case is given by

b~F2Fs
id!

N
5

bFHS

N
1E

0

K

^bU/N&K8

dK8

K8
, ~53!

whereFHS is the hard sphere fluid free energy andFs
id is the

noninteracting ideal spin contribution, given by

bFs
id

N
52 lnS 4p

sinh bmB0

bmB0
D . ~54!

The thermodynamic integration in Eq.~53! is particularly
tedious at zero field, due to the presence of the singularit
the Curie temperature and the need to optimize thea param-
eter to achieve the zero-field divergence ofxyy . A summary
of the thermodynamic results for the new set of states
presented in Table II. Once again, theoretical results for z
field are obtained only with the RZH approximation. F
finite field, the quality of the RHNC results exceeds som
what the RZH results, in particular for the virial pressure.
to the free energy, the thermodynamic integration on
RZH internal energies yields slightly better results than
direct formula of RHNC.~If this procedure were carried ou
on the RHNC internal energies, the values obtained foF
would be practically identical, given the agreement of bo
approximations for the internal energy.! In any case, the
RHNC direct free energies are already remarkably good.
departures observed in the RZH virial pressures at zero fi
stem mostly from the hard core terms in Eq.~49!, since the
spin-spin contributions, including the term accounting for t
potential truncation, are reproduced with accuracies com
rable to that of the internal energy. In order to improve the
results it would be necessary to implement a thermodyna
consistency condition, which would be considerably mo
cumbersome at zero field, where it would be added to
enforcement of the transverse susceptibility divergence. T
latter constraint is essential to reproduce the correct magn
behavior.

Confident of the quality of our theoretical thermodynam
estimates, we are now in a position to calculate the gas-liq
phase equilibrium. Since we already have information on
zero-field phase diagram from Ref.@8#, it is of primary in-
terest to estimate the boundaries of the phase diagrams i
presence of various external magnetic fields. Thus, we
tion
TABLE II. Thermodynamic properties for a high density state (rs350.92) of the hard sphere Heisenberg spin fluid. Integral equa
vs MC ~NVT! simulation results using 512 spins.

bmB0 T*

b(F2Fs
id)/N bP/r bU/N M

MC RHNC RZHa MC RHNC RZH MC RHNC RZH MC RHNC RZH

0 1.0 21.675 21.672 3.20 2.76 27.642 27.631 0.935 0.933
3.0 2.978 2.96 9.65 9.16 21.744 1.742 0.764 0.759

3.38 1.0 23.380 23.48 23.38 2.78 2.91 2.55 27.824 27.822 27.819 0.948 0.948 0.948
3.0 1.62 1.49 1.57 9.03 8.95 8.6 22.253 22.250 22.249 0.881 0.880 0.880

aValue obtained from thermodynamic integration of the excess internal energy via Eq.~53!.
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consider a fully aligned spin system, i.e., a spin fluid un
the action of an infinitely strong external field. This turns o
to be nothing but a fluid of hard spheres plus attract
Yukawa potential, for which the RHNC approximation h
already been shown to yield excellent results@36#. The sim-
plicity of this extreme case makes feasible the optimizat
of the reference system hard sphere diametersHS in the

FIG. 5. Phase diagram of the Heisenberg spin fluid in the p
ence of an external field~upper figure! and at zero field~lower
figure!. Simulation data are shown as black circles and RHNC
sults as solid lines. In the lower figure, the simulation data are ta
from Ref.@6# while the dash-dotted line indicates density function
theory results taken from Ref.@8#; white diamonds represent tw
equilibrium points obtained from thermodynamic integration of t
RZH results.
r
t
e

n

RHNC calculations, whereby thermodynamic properties~and
in particular the pressure and free energy! are substantially
improved. The phase equilibrium is calculated by means o
double tangent construction on the free energy data furnis
by the RHNC. The results of this calculation are presented
Fig. 5, along with GEMC data, which are also summarized
Table III. Comparing the pure Yukawa and the zero fie
results in this figure, one notes that the equilibrium densi
are only slightly affected by the external field. We ha
therefore chosen a relatively large field,bmB0516, to per-
form an additional set of calculations at nonzero but fin
field. The results obtained from the RHNC approximatio
seen in Fig. 5, although relatively good, are somewhat wo
than those obtained for the pure Yukawa; this is a dir
consequence of the neglect of the optimization condition
finite field. The situation is slightly worse using the RZ
equation in the zero field case. Here the use of thermo
namic integration based on the energy route, which yie
extremely good thermodynamics, is too time consumi
since it has to be performed for every density needed to m
the isotherms required for the double tangent construct
Consequently, we have used the virial route starting fr
low density results, which is somewhat poorer, since R
virial pressures are not as accurate as the correspondin
ternal energies~see Table II!. Therefore, we have only cal
culated two equilibrium points~each implies 100 integra
equation solutions!, which are shown in the lower part o
Fig. 5. In this case, the data show deviations within 8–10
which compares poorly with the 1–5% deviations in the pu
RHNC or 0.5% in the optimized RHNC.

Finally, both theory and simulation show that the effect
an external field on the spin system~and presumably also on
dipolar fluids@37#! is a considerable increase in the critic
temperature, while equilibrium densities are not significan
affected; i.e., external fields tend to stabilize the liquid pha

In summary, we have presented an application of a no
technique to study orientationally ordered fluid phases, ba
on a combination of traditional integral equation metho
with an appropriate choice of orthogonal polynomials to e
pand the correlation functions. Detailed comparisons w
standard NVT Monte Carlo, finite size scaling, and GEM
show that the proposed approach is powerful enough to g
a correct account of the magnetic transition and a more t

s-

-
n

l

GEMC
TABLE III. Gas-liquid coexistence properties for the Heisenberg spin fluid in the presence of external fields as obtained from
calculations. The subscriptsg and l denote the gas and liquid phases, respectively;m is the chemical potential.

bmB0 T*
No. of
cycles rg r l (bPs3)g (bPs3) l (bm)g (bm) l (bU/N)g (bU/N) l Mg Ml

16 1.1 60000 0.02160.004 0.7260.01 0.019 20.13 215.48 215.46 20.181 25.57 0.935 0.961
1.2 30000 0.05160.006 0.6660.01 0.040 0.005 213.62 213.61 20.384 24.59 0.930 0.956
1.3 40000 0.08260.01 0.5560.02 0.058 0.022 212.58 212.58 20.546 23.43 0.926 0.948
1.35 40000 0.1260.02 0.5060.03 0.078 0.073 211.72 211.71 20.772 22.98 0.926 0.945
1.375 30000 0.1660.04 0.4360.05 0.094 0.09 211.90 211.89 21.10 22.56 0.928 0.940

` 1.3 20000 0.04260.006 0.67260.015 0.033 0.050 23.61 23.62 20.338 24.74
1.4 40000 0.06660.005 0.6060.01 0.049 0.030 23.49 23.49 20.491 23.87
1.5 20000 0.1260.01 0.5360.02 0.073 0.076 23.64 23.64 20.803 23.21
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reasonable description of the gas-liquid phase behavior.
extension of this work to dipolar systems is currently und
way.
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APPENDIX A: MODIFIED LEGENDRE FUNCTIONS

The prerequisites@38# for construction of the modified
Legendre functions are the moments

^xk&[ 1
2 E

21

1

dx f~x!xk. ~A1!

For an exponential distribution
n
r

r
-
y
-

e

-

f ~x!5S sinh l

l D 21

elx, ~A2!

these are obtained as

^xk&5S sinh l

l D 21 dk

dlk S sinh l

l D . ~A3!

Then, in a straightforward application of the Gram-Schm
method @19#, we begin withP00(x)51 and construct the
next polynomial withm50 asP10(x)5a(x2b). Orthogo-
nality then requires

^P00~x!P10~x!&5a~^x&2b!50 ~A4!

or b5^x&, while normalization leads to

^P 10
2 ~x!&5a2@^x2&22^x&21^x&2#51 ~A5!

or a51/@^x2&2^x&2#1/2. Thus we find

P10~x!5
x2^x&

@^x2&2^x&2#1/25
1

~D00D10!
1/2U1 ^x&

1 x
U.

~A6!

In the second equality of Eq.~A6!, we have used two deter
minantsDlm , defined in general form50,1,2,...,l , by
-

Dlm5U ^~12x2!m& ^x~12x2!m& ¯ ^xl 2m~12x2!m&

^x~12x2!m& ^x2~12x2!m& ¯ ^xl 2m11~12x2!m&

• • ¯ •

• • ¯ •

• • ¯ •

^xl 2m~12x2!m& ^xl 2m11~12x2!m& ¯ ^x2~ l 2m!~12x2!m&

U , ~A7!

which we supplement withDm21,m[1. The general expression forPl0(x) is given by Akhiezer@38# as

Pl0~x!5
1

~Dl 21,0Dl0!1/2U 1 ^x& ¯ ^xl&

^x& ^x2& ¯ ^xl 11&

• • ¯ •

• • ¯ •

• • ¯ •

^xl 21& ^xl& ¯ ^x2l 21&

1 x ¯ xl

U . ~A8!

Retaining the general structure of the standardPlm(x), a similar procedure is followed for higherm values. Thus, the
sequence form51 begins withP11(x)5(12x2)1/2/(12^x2&)1/2; P21(x)5(12x2)1/2a(x2b) is then constructed to be or
thogonal toP11(x) and normalized to unity. More briefly, we can generalize the expression given by Akhiezer forPl0(x) and
define finally
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Plm~x!5
~12x2!m/2

~Dl 21,mDlm!1/2U ^~12x2!m& ^x~12x2!m& ¯ ^xl 2m~12x2!m&

^x~12x2!m& ^x2~12x2!m& ¯ ^xl 2m11~12x2!m&

• • ¯ •

• • ¯ •

• • ¯ •

^xl 2m21~12x2!m& ^xl 2m~12x2!m& ¯ ^x2~ l 2m!21~12x2!m&

1 x ¯ xl 2m

U . ~A9!
n

rg
a
n

so

rnal

m.

y

Integrals overx5cosu are evaluated using Gaussia
quadrature@38# based on then zeroesxk of Pn0(x),

1
2 E

21

1

dx f~x!h~x!'(
k51

n

wkh~xk!, ~A10!

with the weights

wk5F (
l 50

n21

P l0
2 ~xk!G21

. ~A11!

Equation ~A10! is exact if h(x) is a polynomial ofx of
degree 2n21 or less. This ensures the exactnumericalor-
thonormality of the polynomials used in the calculation,

(
k51

n

wkPlm~xk!P l 8m~xk!5d l l 8 ~A12!

for l ,l 8,n @cf. Eq. ~14!#.

APPENDIX B: HELMHOLTZ FREE ENERGY

The Helmholtz free energyF id52kBT ln Zid of the ideal
spin gas is, from Eq.~3!,

bF id

N
5 ln rL3212 lnS 4p

sinh bmB0

bmB0
D . ~B1!

To calculate the total free energy we use the familiar ‘‘cha
ing’’ process, turning on the spin-spin interactions with
parameterj, 0<j<1. However, as emphasized by Sulliva
@39#, the one-body distributionf (v) should remainun-
changedas the interaction is turned on. Thus we will al
adopt an effective external fieldB0(j) designed to maintain
fixed the f (v) found by calculation, Eq.~50!. Define then
the partition function

Z~j!5
1

N!L3N E )
j 51

N

@dr jdv j #expS bmB0~j!(
j

cosu j

2b(
i , j

u0~r i j !2jb(
i , j

uss~r i j ,v i ,v j ! D , ~B2!

where the external field is such that

B0~j50!5B,

B0~j51!5B0 .
-

Then frombF(j)52 ln Z(j) we get

dbF~j!

dj
52Nbm

dB0~j!

dj
^x&1

1

2

Nr

~4p!2 E drdv1dv2

3 f ~v1! f ~v2!g~r ,v1 ,v2uj!buss~r ,v1 ,v2!,

~B3!

whereg(r ,v1 ,v2uj) is the pair distribution function for the
partially charged system. We note thatF(0) is the free en-
ergy of hard spheres with noninteracting spins in an exte
field B0(0); that is,

bF~0!

N
5

bFHS

N
2 lnS 4p

sinh bmB

bmB D , ~B4!

whereFHS is the total free energy of a hard sphere syste
Integration of Eq.~B3! then gives

bF

N
5

bF~0!

N
2bm@B0~1!2B0~0!#^x&1

bDF

N

5
bFHS

N
2 lnS 4p

sinh bmB

bmB D
1bm~B2B0!^x&1

bDF

N
, ~B5!

where the spin-spin contribution is

bDF

N
[

1

2

r

~4p!2 E drdv1dv2f ~v1! f ~v2!

3E
0

1

djg~r ,v1 ,v2uj!buss~r ,v1 ,v2!. ~B6!

Finally, the excess free energyFex5F2F id is

bFex

N
5FbmB^x&2 lnS sinh bmB

bmB D G
2FbmB0^x&2 lnS sinh bmB0

bmB0
D G

1
bFHS

ex

N
1

bDF

N
, ~B7!

with bFHS
ex /N5bFHS/N2 ln rL311 the excess free energ

of the hard sphere system.
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The final step is evaluation ofbDF/N. We follow the derivation of Morita and Hiroike@40#; appropriate generalizations fo
molecular systems@20# and special polynomials@41# have already been described. The result is

bDF

N
52

1

2
r c̃000~0!2

1

2r E dk

~2p!3 (
m

$ ln det@ I 1~21!mrH̃m~k!#2~21!mr tr@H̃m~k!#1 1
2 r2 tr@C̃m

2 ~k!2G̃m
2 ~k!#%

1
1

2
r c̃HS~0!1

1

2r E dk

~2p!3 $ ln@11rh̃HS~k!#2rh̃HS~k!1 1
2 r2@ c̃HS

2 ~k!2g̃HS
2 ~k!#%

1
1

2
rE drE

0

1

dj (
l 1 ,l 2 ,m

gl 1l 2m~r uj!
]bl 1l 2m~r uj!

]j
, ~B8!

whereG̃m(k), C̃m(k), andH̃m(k) are symmetric matrices with elementsg̃ l 1l 2m(k), c̃l 1l 2m(k), andh̃l 1l 2m(k), respectively, for

l 1 ,l 2>m, with h5g21; det and tr are the determinant and trace operations. The last term of Eq.~B8! must be approximated
For the RHNC closure, one assumes the bridge function does not change appreciably as the interaction goes from
sphere potential to the full potential and the last term is neglected.
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